Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Rep ; 12(1): 21487, 2022 12 12.
Article in English | MEDLINE | ID: covidwho-2247736

ABSTRACT

The economic impact of the COVID-19 pandemic on global health systems is a major concern. To plan and allocate resources to treat COVID-19 patients and provide insights into the financial sustainability of healthcare systems in fighting the future pandemic, measuring the costs to treat COVID-19 patients is deemed necessary. As such, we conducted a retrospective, real-world observational study to measure the direct medical cost of treating COVID-19 patients at a tertiary care hospital in Saudi Arabia. The analysis was conducted using primary data and a mixed methodology of micro and macro-costing. Between July 2020 and July 2021, 287 patients with confirmed COVID-19 were admitted and their data were analyzed. COVID-19 infection was confirmed by RT-PCR or serologic tests in all the included patients. There were 60 cases of mild to moderate disease, 148 cases of severe disease, and 79 critically ill patients. The cost per case for mild to moderate disease, severe disease, and critically ill was 2003 USD, 14,545 USD, and 20,188 USD, respectively. There was a statistically significant difference in the cost between patients with comorbidities and patients without comorbidities (P-value 0.008). Across patients with and without comorbidities, there was a significant difference in the cost of the bed, laboratory work, treatment medications, and non-pharmaceutical equipment. The cost of treating COVID-19 patients is considered a burden for many countries. More studies from different private and governmental hospitals are needed to compare different study findings for better preparation for the current COVID-19 as well as future pandemics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/therapy , Pandemics , Retrospective Studies , Hospitalization , Hospitals, Public , Saudi Arabia/epidemiology
2.
Diseases ; 10(4)2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2142623

ABSTRACT

Background: Tixagevimab/cilgavimab (TGM/CGM) are neutralizing monoclonal antibodies (mAbs) directed against different epitopes of the receptor-binding domain of the SARS-CoV-2 spike protein that have been considered as pre-exposure prophylaxis (PrEP). Objectives: This study seeks to assess the efficacy and safety of TGM/CGM to prevent COVID-19 in patients at high risk for breakthrough and severe SARS-CoV-2 infection who never benefited maximally from SARS-CoV-2 vaccination and for those who have a contraindication to SARS-CoV-2 vaccines. Design: This study is a systematic review and meta-analysis. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement was followed. Methods: Electronic databases (PubMed, CINAHL, Embase, medRxiv, ProQuest, Wiley online library, Medline, and Nature) were searched from 1 December 2021 to 30 November 2022 in the English language using the following keywords alone or in combination: 2019-nCoV, 2019 novel coronavirus, COVID-19, coronavirus disease 2019, SARS-CoV-2, severe acute respiratory syndrome coronavirus 2, tixagevimab, cilgavimab, combination, monoclonal, passive, immunization, antibody, efficacy, clinical trial, cohort, pre-exposure, prophylaxis, and prevention. We included studies in moderate to severe immunocompromised adults (aged ≥18 years) and children (aged ≥12 years) who cannot be vaccinated against COVID-19 or may have an inadequate response to SARS-CoV-2 vaccination. The effect sizes of the outcome of measures were pooled with 95% confidence intervals (CIs) and risk ratios (RRs). Results: Of the 76 papers that were identified, 30 articles were included in the qualitative analysis and 13 articles were included in the quantitative analysis (23 cohorts, 5 case series, 1 care report, and 1 randomized clinical trial). Studies involving 27,932 patients with high risk for breakthrough and severe COVID-19 that reported use of TGM/CGM combination were analyzed (all were adults (100%), 62.8% were men, and patients were mainly immunocompromised (66.6%)). The patients' ages ranged from 19.7 years to 79.8 years across studies. TGM/CGM use was associated with lower COVID-19-related hospitalization rate (0.54% vs. 1.2%, p = 0.27), lower ICU admission rate (0.6% vs. 5.2%, p = 0.68), lower mortality rate (0.2% vs. 1.2%, p = 0.67), higher neutralization of COVID-19 Omicron variant rate (12.9% vs. 6%, p = 0.60), lower proportion of patients who needed oxygen therapy (8% vs. 41.2%, p = 0.27), lower RT-PCR SARS-CoV-2 positivity rate (2.1% vs. 5.8%, p < 0.01), lower proportion of patients who had severe COVID-19 (0% vs. 0.5%, p = 0.79), lower proportion of patients who had symptomatic COVID-19 (1.8% vs. 6%, p = 0.22), and higher adverse effects rate (11.1% vs. 10.7%, p = 0.0066) than no treatment or other alternative treatment in the prevention of COVID-19. Conclusion: For PrEP, TGM/CGM-based treatment can be associated with a better clinical outcome than no treatment or other alternative treatment. However, more randomized control trials are warranted to confirm our findings and investigate the efficacy and safety of TGM/CGM to prevent COVID-19 in patients at risk for breakthrough or severe SARS-CoV-2 infection.

3.
Vaccines (Basel) ; 10(10)2022 Oct 02.
Article in English | MEDLINE | ID: covidwho-2066616

ABSTRACT

Since the first case of Coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, SARS-CoV-2 infection has affected many individuals worldwide. Eventually, some highly infectious mutants-caused by frequent genetic recombination-have been reported for SARS-CoV-2 that can potentially escape from the immune responses and induce long-term immunity, linked with a high mortality rate. In addition, several reports stated that vaccines designed for the SARS-CoV-2 wild-type variant have mixed responses against the variants of concern (VOCs) and variants of interest (VOIs) in the human population. These results advocate the designing and development of a panvaccine with the potential to neutralize all the possible emerging variants of SARS-CoV-2. In this context, recent discoveries suggest the design of SARS-CoV-2 panvaccines using nanotechnology, siRNA, antibodies or CRISPR-Cas platforms. Thereof, the present comprehensive review summarizes the current vaccine design approaches against SARS-CoV-2 infection, the role of genetic mutations in the emergence of new viral variants, the efficacy of existing vaccines in limiting the infection of emerging SARS-CoV-2 variants, and efforts or challenges in designing SARS panvaccines.

4.
BMC Gastroenterol ; 22(1): 433, 2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2064737

ABSTRACT

BACKGROUND: Liver diseases post-COVID-19 vaccination is extremely rare but can occur. A growing body of evidence has indicated that portal vein thrombosis, autoimmune hepatitis, raised liver enzymes and liver injuries, etc., may be potential consequence of COVID-19 vaccines. OBJECTIVES: To describe the results of a systematic review for new-onset and relapsed liver disease following COVID-19 vaccination. METHODS: For this systematic review, we searched Proquest, Medline, Embase, PubMed, CINAHL, Wiley online library, Scopus and Nature through the Preferred Reporting Items for Systematic Reviews and Meta Analyses PRISMA guideline for studies on the incidence of new onset or relapsed liver diseases post-COVID-19 vaccination, published from December 1, 2020 to July 31, 2022, with English language restriction. RESULTS: Two hundred seventy-five cases from one hundred and eighteen articles were included in the qualitative synthesis of this systematic review. Autoimmune hepatitis (138 cases) was the most frequent pathology observed post-COVID-19 vaccination, followed by portal vein thrombosis (52 cases), raised liver enzymes (26 cases) and liver injury (21 cases). Other cases include splanchnic vein thrombosis, acute cellular rejection of the liver, jaundice, hepatomegaly, acute hepatic failure and hepatic porphyria. Mortality was reported in any of the included cases for acute hepatic failure (n = 4, 50%), portal vein thrombosis (n = 25, 48.1%), splanchnic vein thrombosis (n = 6, 42.8%), jaundice (n = 1, 12.5%), raised liver enzymes (n = 2, 7.7%), and autoimmune hepatitis (n = 3, 2.2%). Most patients were easily treated without any serious complications, recovered and did not require long-term hepatic therapy. CONCLUSION: Reported evidence of liver diseases post-COIVD-19 vaccination should not discourage vaccination against this worldwide pandemic. The number of reported cases is relatively very small in relation to the hundreds of millions of vaccinations that have occurred and the protective benefits offered by COVID-19 vaccination far outweigh the risks.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hepatitis, Autoimmune , Liver Failure, Acute , Venous Thrombosis , Humans , Chronic Disease , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Hepatitis, Autoimmune/complications , Hepatitis, Autoimmune/etiology , Liver Failure, Acute/complications , Vaccination/adverse effects , Venous Thrombosis/complications , Venous Thrombosis/etiology
5.
Vaccines (Basel) ; 10(8)2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-1997852

ABSTRACT

Antibodies (Abs) are important immune mediators and powerful diagnostic markers in a wide range of infectious diseases. Understanding the humoral immunity or the development of effective antibodies against SARS-CoV-2 is a prerequisite for limiting disease burden in the community and aids in the development of new diagnostic, therapeutic, and vaccination options. Accordingly, the role of antiviral antibodies in the resistance to and diagnosis of SARS-CoV-2 infection was explored. Antibody testing showed the potential in adding important diagnostic value to the routine diagnosis and clinical management of COVID-19. They could also play a critical role in COVID-19 surveillance, allowing for a better understanding of the full scope of the disease. The development of several vaccines and the success of passive immunotherapy suggest that anti-SARS-CoV-2 antibodies have the potential to be used in the treatment and prevention of SARS-CoV-2 infection. In this review, we highlight the role of antibodies in the diagnosis of SARS-CoV-2 infection and provide an update on their protective roles in controlling SARS-CoV-2 infection as well as vaccine development.

6.
Vaccines (Basel) ; 10(8)2022 Aug 10.
Article in English | MEDLINE | ID: covidwho-1979455

ABSTRACT

BACKGROUND: Solid organ rejection post-SARS-CoV-2 vaccination or COVID-19 infection is extremely rare but can occur. T-cell recognition of antigen is the primary and central event that leads to the cascade of events that result in rejection of a transplanted organ. OBJECTIVES: To describe the results of a systematic review for solid organ rejections following SARS-CoV-2 vaccination or COVID-19 infection. METHODS: For this systematic review and meta-analysis, we searched Proquest, Medline, Embase, Pubmed, CINAHL, Wiley online library, Scopus and Nature through the Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines for studies on the incidence of solid organ rejection post-SARS-CoV-2 vaccination or COVID-19 infection, published from 1 December 2019 to 31 May 2022, with English language restriction. RESULTS: One hundred thirty-six cases from fifty-two articles were included in the qualitative synthesis of this systematic review (56 solid organs rejected post-SARS-CoV-2 vaccination and 40 solid organs rejected following COVID-19 infection). Cornea rejection (44 cases) was the most frequent organ observed post-SARS-CoV-2 vaccination and following COVID-19 infection, followed by kidney rejection (36 cases), liver rejection (12 cases), lung rejection (2 cases), heart rejection (1 case) and pancreas rejection (1 case). The median or mean patient age ranged from 23 to 94 years across the studies. The majority of the patients were male (n = 51, 53.1%) and were of White (Caucasian) (n = 51, 53.7%) and Hispanic (n = 15, 15.8%) ethnicity. A total of fifty-six solid organ rejections were reported post-SARS-CoV-2 vaccination [Pfizer-BioNTech (n = 31), Moderna (n = 14), Oxford Uni-AstraZeneca (n = 10) and Sinovac-CoronaVac (n = 1)]. The median time from SARS-CoV-2 vaccination to organ rejection was 13.5 h (IQR, 3.2-17.2), while the median time from COVID-19 infection to organ rejection was 14 h (IQR, 5-21). Most patients were easily treated without any serious complications, recovered and did not require long-term allograft rejection therapy [graft success (n = 70, 85.4%), graft failure (n = 12, 14.6%), survived (n = 90, 95.7%) and died (n = 4, 4.3%)]. CONCLUSION: The reported evidence of solid organ rejections post-SARS-CoV-2 vaccination or COIVD-19 infection should not discourage vaccination against this worldwide pandemic. The number of reported cases is relatively small in relation to the hundreds of millions of vaccinations that have occurred, and the protective benefits offered by SARS-CoV-2 vaccination far outweigh the risks.

7.
Vaccines (Basel) ; 10(7)2022 Jun 21.
Article in English | MEDLINE | ID: covidwho-1964123

ABSTRACT

COVID-19, caused by SARS-CoV-2, is one of the longest viral pandemics in the history of mankind, which have caused millions of deaths globally and induced severe deformities in the survivals. For instance, fibrosis and cavities in the infected lungs of COVID-19 are some of the complications observed in infected patients post COVID-19 recovery. These health abnormalities, including is multiple organ failure-the most striking pathological features of COVID-19-have been linked with diverse distribution of ACE2 receptor. Additionally, several health complications reports were reported after administration of COVID-19 vaccines in healthy individuals, but clinical or molecular pathways causing such complications are not yet studied in detail. Thus, the present systematic review established the comparison of health complication noted in vaccinated and non-vaccinated individuals (COVID-19 infected patients) to identify the association between vaccination and the multiorgan failure based on the data obtained from case studies, research articles, clinical trials/Cohort based studies and review articles published between 2020-2022. This review also includes the biological rationale behind the COVID-19 infection and its subsequent symptoms and effects including multiorgan failure. In addition, multisystem inflammatory syndrome (MIS) has been informed in individuals post vaccination that resulted in multiorgan failure but, no direct correlation of vaccination with MIS has been established. Similarly, hemophagocytic lymphohistiocytosis (HLH) also noted to cause multiorgan failure in some individuals following full vaccination. Furthermore, severe complications were recorded in elderly patients (+40 years of age), indicates that older age individuals are higher risk by COVID-19 and post vaccination, but available literature is not sufficient to comply with any conclusive statements on relationship between vaccination and multiorgan failure.

8.
Int J Environ Res Public Health ; 19(12)2022 06 14.
Article in English | MEDLINE | ID: covidwho-1896856

ABSTRACT

A reliable estimate of SARS-CoV-2-specific antibodies is increasingly important to track the spread of infection and define the true burden of the ongoing COVID-19 pandemic. A systematic review and a meta-analysis were conducted with the objective of estimating the seroprevalence of SARS-CoV-2 infection in Africa. A systematic search of the PubMed, Scopus, Web of Science and Google Scholar electronic databases was conducted. Thirty-five eligible studies were included. Using meta-analysis of proportions, the overall seroprevalence of anti-SARS-CoV-2 antibodies was calculated as 16% (95% CI 13.1-18.9%). Based on antibody isotypes, 14.6% (95% CI 12.2-17.1%) and 11.5% (95% CI 8.7-14.2%) were seropositive for SARS-CoV-2 IgG and IgM, respectively, while 6.6% (95% CI 4.9-8.3%) were tested positive for both IgM and IgG. Healthcare workers (16.3%) had higher seroprevalence than the general population (11.7%), blood donors (7.5%) and pregnant women (5.7%). The finding of this systematic review and meta-analysis (SRMA) may not accurately reflect the true seroprevalence status of SARS-CoV-2 infection in Africa, hence, further seroprevalence studies across Africa are required to assess and monitor the growing COVID-19 burden.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/epidemiology , Female , Humans , Immunoglobulin G , Immunoglobulin M , Pandemics , Pregnancy , Seroepidemiologic Studies
9.
Hum Vaccin Immunother ; 17(8): 2445-2447, 2021 Aug 03.
Article in English | MEDLINE | ID: covidwho-1172616

ABSTRACT

The unprecedented need to acquire a safe and effective vaccine for the long-term control of coronavirus disease 2019 (COVID-19) is a global imperative. Researchers have been working urgently and collaboratively to develop vaccines against the causative agent of COVID-19. The use of messenger RNA (mRNA) vaccine platform offers new opportunities for the development of effective vaccines. The first use of COVID-19 mRNA vaccines for individuals outside the clinical trials raised concerns over their safety and future efficacy. In social media, particularly in developing countries, widely shared false claims allege that the current mRNA-based COVID-19 vaccines potentially integrate into the host genome and thus may genetically modify humans. These vaccines are also assumed to lack efficacy due to the emergence of new strains. Such misinformation cause people to hesitate about receiving vaccination against COVID-19. This commentary aimed to outline the structure, mechanism of action and the major motive for the use of COVID-19 mRNA vaccine, with a focus on scientifically addressing challenges associated with conspiracy theories and dispelling misinformation around vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , RNA, Messenger/genetics , SARS-CoV-2 , Vaccination
10.
Am J Trop Med Hyg ; 103(2): 558-560, 2020 08.
Article in English | MEDLINE | ID: covidwho-608342

ABSTRACT

Rapid diagnostic tests (RDTs) play a critical role in malaria diagnosis and control. The emergence of Plasmodium falciparum parasites that can evade detection by RDTs threatens control and elimination efforts. These parasites lack or have altered genes encoding histidine-rich proteins (HRPs) 2 and 3, the antigens recognized by HRP2-based RDTs. Surveillance of such parasites is dependent on identifying false-negative RDT results among suspected malaria cases, a task made more challenging during the current pandemic because of the overlap of symptoms between malaria and COVID-19, particularly in areas of low malaria transmission. Here, we share our perspective on the emergence of P. falciparum parasites lacking HRP2 and HRP3, and the surveillance needed to identify them amid the COVID-19 pandemic.


Subject(s)
Coronavirus Infections/epidemiology , Diagnostic Tests, Routine/methods , Malaria, Falciparum/diagnosis , Plasmodium falciparum/isolation & purification , Pneumonia, Viral/epidemiology , Africa , Antigens, Protozoan/analysis , Betacoronavirus , COVID-19 , Humans , Malaria, Falciparum/epidemiology , Pandemics , Protozoan Proteins/analysis , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL